NS-PRIME SUBMODULES

Iman A. Athab

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

E-mail: iraqtariq310@gmail.com

ABSTRACT: Let R be a commutative ring with identity and M is a unitary R-module. A proper submodule N of M is said tobe nearly S-prime (written as NS-prime) if whenever $f(m) \in N$ for some $f \in S = End(M)$ and $m \in M$, implies that either $m \in N + J(M)$ or $f(M) \subseteq N + J(M)$, where J(M) is the Jacobson radical of M. The aim of this artical is to study this class of submodules and interpret various properties for this type of submodule.

1. INTRODUCTION

In our research all rings will be commutative with identity and all modules are unital. A proper submodule N of an Rmodule M is called prime, if for each $r \in \mathbb{R}$ and $x \in M$ with $rx \in \mathbb{N}$ implies that either $x \in \mathbb{N}$ or $r \in [\mathbb{N}:\mathbb{M}] = \{s \in \mathbb{R}; sM \subseteq \mathbb{N}\}$, [8]. In [6] was introduced the concept of Sprime submodule as follows: A proper submodule N of an R-module M is said to be S-prime, if whenever $f(m) \in \mathbb{N}$ for some $f \in \text{End}(\mathbb{M})$ and $m \in \mathbb{M}$ implies that either $m \in \mathbb{N}$ or $f(\mathbb{M}) \subseteq \mathbb{N}$. In [6] was stated that every S-prime submodule is a prime submodule.

The notion of nearly prime submodule (for short *N*-prime submodule) was given in [9], where a proper submodule N of an R-module M is said to be *N*-prime, if whenever $r \in \mathbb{R}$ and $m \in \mathbb{M}$ with $rm \in \mathbb{N}$, then either $m \in \mathbb{N} + J(\mathbb{M})$ or $r \in [\mathbb{N} + J(\mathbb{M}): \mathbb{M}]$, where $J(\mathbb{M})$ is the Jacobson radical of M. In This article, we study a new class of submodules, which is called *NS*-prime submodules, where a proper submodule N of an R-module M is *NS*-prime, if for all $f \in \text{End}(\mathbb{M})$ and for all $m \in \mathbb{M}$ with $f(x) \in \mathbb{N}$, implies that either $m \in \mathbb{N} + J(\mathbb{M})$ or $f(\mathbb{M}) \subseteq \mathbb{N} + J(\mathbb{M})$. Many results concerned with this concept is presented. We give some properties and characterization about this type of submodules.

2. NS-prime submodules

Let R be a commutative ring with identity and let M be a unitary R-module. A proper submodule N of M is called Sprime, if whenever $f(m) \in N$, for some $f \in End(M)$ and $m \in M$, implies that either $m \in N$ or $f(M) \subseteq N$, [6].

We introduce the following definition:

Definition (2.1):

A proper submodule N of an R-module M is said to be nearly S-prime (for short NS-prime), if whenever $f(m) \in$ N, for $m \in M$ and $f \in S = \text{End}(M)$, then either $m \in N + J(M)$ or $f(M) \subseteq N + J(M)$, where J(M) is the Jacobson radical of M.

Remarks and examples (2.2):

1) Every *NS*-prime submodule of an R-module M is *N*-prime. **Proof:-**

Let N be an NS-prime submodule of M and Suppose that $rm \in N$ for $r \in R$ and $m \in M$. Assume that $m \notin N + J(M)$. Define $f: M \to M$ by f(x) = rx, $x \in M$. Now, $rm = f(m) \in N$, but N is NS-prime submodule of M and $m \notin N + J(M)$, thus $f(M) \subseteq N + J(M)$. Therefore $rM \subseteq N + J(M)$ and hence N is an N-prime.

The following example shows that the converse of the previous remark, is not true in general.

Let $M = \mathbb{Z}_2 + \mathbb{Z}$ as \mathbb{Z} -module, and let $N = \{\overline{0}\} + 2\mathbb{Z}$. J(M) = 0. N is *N*-prime. Now, define, $f: M \to M$ by $f(\bar{n},m) = (\bar{0},m)$ for all $(\bar{n},m) \in \mathbb{Z}_2 + \mathbb{Z}$. $f \in \text{End}(M)$ and $f(\bar{1},2) = (\bar{0},2) \in \{\bar{0}\} + 2\mathbb{Z}$. But

 $(\overline{1}, 2) \notin \mathbb{N} + J(\mathbb{M})$ and $f(\mathbb{Z}_2 + \mathbb{Z}) = \{\overline{0}\} + \mathbb{Z} \notin \{\overline{0}\} + 2\mathbb{Z}$.

Therefore N is *N*-prime, but it is not *N*S-prime submodule of M.

2) Every S-prime submodule N of an R-module M is *NS*-prime submodule.

Proof:-

Let $m \in M$ and $f \in S = \text{End}(M)$ with $f(m) \in N$. Since N is S-prime submodule of M, thus either $m \in N$ or $f(M) \subseteq N$. Therefore either $m \in N + J(M)$ or $f(M) \subseteq N + J(M)$.

The converse of the remark (2) is not true in general. As the following example shows. For the module $\mathbb{Z}_{\rho^{\infty}}$ as Z-module are have ($\overline{0}$) is *NS*-prime submodule, but it is not S-prime submodule.

Recall that a proper submodule N of an R-module M is called *NS*-primary submodule of M, if whenever $f(m) \in N$ for some $f \in S = \text{End}(M)$ and $m \in M$, implies that either $m \in N + J(M)$ or $f^n(M) \subseteq N + J(M)$ for some $n \in \mathbb{Z}^+$, [7].

3) Every *NS*-prime submodule of an R-module M is *NS*-primary.

The converse of (3) is not true, for example the $\{\overline{0}\}$ submodule of \mathbb{Z}_4 as \mathbb{Z} -module is an *NS*-primary submodule of \mathbb{Z}_4 which is not *NS*-prime submodule of \mathbb{Z}_4 .

4) The rational number \mathbb{Q} as \mathbb{Z} -module has the $\{0\}$ submodule as the only *NS*-prime submodule of \mathbb{Q} .

The following proposition gives a characterization of *NS*-prime submodules.

Proposition (2.3):

Let N be a submodule of an R- module M then N is NSprime submodule if and only, if for every submodule K of M such that $f(K) \subseteq N$; $f \in End(M)$ implies that either $K \subseteq N + J(M)$ or $f(M) \subseteq N + J(M)$.

Proof:-

Assume that $f(K) \subseteq N$, where K is a submodule of M. Suppose $K \not\subseteq N + J(M)$, then there exists $k \in K$; $k \notin N + J(M)$. It is clear that $f(k) \in N$, but N is NS-prime submodule, thus $f(M) \subseteq N + J(M)$. Conversely let $m \in M$ with $f(m) \in N$, then $f\langle (m) \rangle \subseteq N$, by assumption either $\langle m \rangle \subseteq N + J(M)$ or $f(M) \subseteq N + J(M)$ this implies that N is NS-prime submodule.

If R is an integral domain and M is an R- module. An element $x \in M$ is called a torsion element of M if $ann(x) \neq 0$. The set of all torsion elements of M which is denoted by T(M) is a submodule of M, [2].

Proposition (2.4): [10]

Let M be a module over an integral domain R, if $T(M) \neq M$ and ker $f \subseteq T(M)$ for all $0 \neq f \in End(M)$, then T(M) is an S-prime submodule of M.

From the previous proposition and (remark (2) in (2.2)) we can prove the following corollary. Corollary (2.5):

Let M be a module over an integral domain R, if $T(M) \neq M$ and ker $f \subseteq T(M)$ for all $0 \neq f \in End(M)$, then T(M) is an *NS*-prime submodule of M.

The following result gives some properties of NS-prime submodules.

Proposition (2.6):

Let K be an *NS*-prime submodule of an R-module M and let N be a submodule of M with J(N) = J(M) and N is M-injective then either $N \subseteq K$ or $K \cap N$ is *NS*-prime submodule of N.

Proof:-

Suppose that $N \not\subseteq K$, then $K \cap N$ is a proper submodule of N. Now, let $f(x) \in K \cap N$ where $f \in End(N)$ and $x \in N$. If $x \notin (K \cap N) + J(N) = (K + J(N)) \cap N$, therefore $x \notin K + J(N)$. We have to show that $f(N) \subseteq (K \cap N) + J(N)$. Consider the following diagram.

$$\begin{array}{cccc} 0 \to & \mathbb{N} & \stackrel{\iota}{\to} & \mathbb{M} \\ & f \downarrow \swarrow & h \\ & & \mathbb{N} \end{array}$$

Where *i* is the inclusion map. Since N is M-injective, therefore there exists a homomorphism $h: M \to N$ such that $h \circ i = f$. Clearly that $h \in End(M)$. But $f(x) = h \circ$ $i(x) = h(x) \in K$. Since K is NS-prime submodule of M and $x \notin K + J(M)$, thus $h(M) \subseteq K + J(M)$. Also we have $f(N) = (h \circ i) (N) = h (N) \subseteq N$ and f(N) = $h(N) \subseteq h(M) \subseteq (K + J(N)) \cap N$. This implies that $f(N) \subseteq$ $(K \cap N) + J(N)$, and hence $K \cap N$ is NS-prime submodule of N.

Let us prove the following an important characterization. Proposition (2.7):

Let M be a nonzero R-module, then $\{0_M\}$ is N-prime submodule of M, if and only, if Ann(N) $\subseteq [J(M): M]$, for all nonzero submodule N of M.

Proof:-

Assume that N is a nonzero submodule of M and $\{0_M\}$ is *N*-prime submodule of M. Let $r \in Ann(N)$, $r \in R$. Since $N \neq 0$, thus there exists $0 \neq x \in N$. But rx = 0, since $\{0_M\}$ is *N*-prime submodule of M and $x \neq 0$ therefore $rM \subseteq J(M)$, this means that $r \in [J(M): M]$, and hence $Ann(N) \subseteq [J(M): M]$. Conversely, let rx = 0, for $r \in R$ and $x \in M$. Suppose that $x \notin J(M)$, then $x \neq 0$. Therefore $\langle x \rangle$ is a nonzero submodule of M. By assumption $Ann(\langle x \rangle) \subseteq [J(M): M]$. Since $r \in Ann(\langle x \rangle)$, thus $r \in [J(M): M]$, this implies that, $rM \subseteq J(M)$ and hence $\{0_M\}$ is *N*-prime submodule of M.

An R-module M is said to be multiplication if for each submodule N of M, there exists an ideal I of R such that N = IM, [5].

Now the following proposition gives a characterization of *NS*-prime submodule.

Proposition (2.8):

If M is a nonzero multiplication R-module, then $\{0_M\}$ is N-prime submodule of M, if and only, if it is NS-prime submodule of M.

Proof:-

Suppose that f(m) = 0, where $f \in End(M)$, and $m \in M$. If $m \notin \{0_M\} + J(M)$, then $m \neq 0$. We have to show that $f(M) \subseteq J(M)$, since $m \neq 0$, then $0 \neq \langle m \rangle = IM$, for some ideal I of R. Now, if f(M) = 0, then we are done. Suppose that $f(M) \neq 0$, since M is multiplication module thus there exists a nonzero ideal J of R such that f(M) = JM. Now, $0 = f(\langle m \rangle) = If(M) = I(J(M)) = J(IM)$, which implies that $J \subseteq Ann(IM)$. From proposition (2.7), we obtain $Ann(IM) \subseteq J(M)$; M] and hence $J \subseteq [J(M):M]$, therefore $JM \subseteq J(M)$, this implies that $f(M) \subseteq J(M)$. Therefore $\{0_M\}$ is *NS*-prime submodule of M. The converse side is clear from (remark (1) in (2.2)).

We introduce the concept of *NS*-prime module and prove some characterization of this concept.

Definition (2.9):

Let M be an R-module. If $\{0_M\}$ is NS-prime submodule of M, then we say that M is NS-prime module.

See the following:

Proposition (2.10):

If M is a multiplication module, and N is a submodule of M, then N is *N*-prime submodule, if and only, if it is *N*S-prime submodule of M.

Proof:-

From [1, Corollary (3.22)], we get that $\frac{M}{N}$ is a multiplication module. Thus N is *N*-prime submodule of M, if and only, N is *NS*-prime submodule of M.

Definition (2.11):[3]

Let M and M' be R-modules, the module M' is called M-projective, if for every homomorphism $f: M' \to \frac{M}{K}$, where K is a submodule of M, can be lifted to a homomorphism $g: M' \to M$.

Now, we can prove the following .

Proposition (2.12):

Let $f: M \to M$ be an R-module epimorphism. If N is NSprime submodule of M such that ker $f \subseteq N$, then f(N) is NSprime submodule of M', where M' is M-projective module. **Proof:**-

f(N) is a proper submodule of M'. Since if f(N) = M'. Thus M = N, which is a contradiction. Now, let $h(m^{`}) \in f(N)$, where $m^{`} \in M$, $h \in End(M^{`})$. Suppose that, $m^{`} \notin f(N) + J(M^{`})$. We have to show that $h(M^{`}) \subseteq f(N) + J(M^{`})$. f is an epimorphism and $m^{`} \in M^{`}$, therefore there exists $m \in M$ such that $f(m) = m^{`}$.

Now consider the following diagram:

$$\begin{array}{c} \mathsf{M}^{`}\\ k \swarrow \downarrow h\\ \mathsf{M} \xrightarrow{f} \mathsf{M}^{`} \to \mathsf{o} \end{array}$$

Since M' is M-projective, then there exists, a homomorphism k, such that $f \circ k = h$. But $h(m) \in f(N)$, thus $(f \circ k) = h$. $k(m) \in f(N)$, and hence $(f \circ k)(f(m)) \in f(N)$. Since $\ker f \subseteq \mathbb{N}$, therefore $(k \circ f)(m) \in \mathbb{N}$. But N is NS-prime submodule of M and $m \notin N + J(M)$, then (k • f (M) \subseteq N + J (M). This implies that $f((k \circ f)(M)) \subseteq$ f(N) + J(M), and hence $(f \circ k) \circ f(M) \subseteq f(N) + J(M)$. Therefore $h(M') \subseteq f(N) + J(M')$. This means that f(N) is an NS-prime submodule of M'.

Corollary (2.13):

Let N be an NS-prime submodule of M and K , is a submodule of M with $K \subseteq N$, then $\frac{N}{K}$ is *NS*-prime submodule of $\frac{M}{K}$, where $\frac{M}{K}$ is an M-projective module.

Definition (2.14):[4]

A submodule N of an R-module M, is said to be fully invariant if $f(N) \subseteq N$, for all $f \in End(M)$.

Proposition (2.15):

Let N be a proper fully invariant submodule of an Rmodule M. If $[N: f(K)] \subseteq [N + J(M): f(M)]$ for all $N \subsetneq K$ and for all $f \in End(M)$, then N is an NS-prime submodule of M.

Proof:-

Let $f(m) \in \mathbb{N}$ where $f \in \text{End}(\mathbb{M})$, and $m \in \mathbb{M}$. Suppose that $m \notin \mathbf{N} + I(\mathbf{M}).$ Thus $N \subseteq N + \langle m \rangle$. Therefore bv assumption $[N: f(N + \langle m \rangle)] \subseteq [N + I(M): f(M)].$

But $1 \in [N: f(N + \langle m \rangle)]$, hence $1 \in [N + J(M): f(M)]$, which implies that $f(M) \subseteq N + I(M)$. Thus N is an NSprime submodule of M.

Proposition (2.16):

Let N be an NS- prime submodule of an R-module M then, $[N: f(K)] \subseteq [N + J(M): f(M)]$, for all submodule K of M with $N + I(M) \subseteq K$.

Proof:-

Let N be an NS - prime submodule of M and K is a submodule of M with $N + I(M) \subsetneq K$, thus there exists $x \in K$ and $x \notin N + J(M)$. Suppose that $r \in [N: f(K)]$ where $r \in \mathbb{R}$, this implies that $rf(x) \in \mathbb{N}$. Now, define $h: M \to M$, by h(m) = rf(m), for all $m \in M$. It is clear that $h \in End(M)$, also $h(x) = rf(x) \in N$. But N is NS - Iprime submodule of M and $x \notin N + J(M)$, therefore $h(M) \subseteq N + I(M)$, this implies that $r f(M) \subseteq N +$ *I*(M). hence $r \in [N + I(M) : f(M)]$. Therefore $[N: f(K)] \subseteq [N + I(M): f(M)].$

Combining proposition (2.15) and proposition (2.16) we have the following characterization.

Proposition (2.17):

Let N be a proper fully invariant submodule of an R-module M, then N is NS-prime submodule, if and only, if $[N: f(K)] \subseteq [N + J(M): f(M)],$ for all submodule K of M with $N + J(M) \subsetneq K$ and for all $f \in End(M)$.

We will prove the following result. **Proposition (2.18):**

Let $\emptyset: M \to M$ be an epimorphism. If N is fully invariant *NS*-prime submodule of M with ker $\emptyset \subseteq I(M)$, then $\emptyset^{-1}(N)$ is also NS-prime submodule of M.

Proof:-

It is clear that $\phi^{-1}(N)$ is proper in M. Now, let $f(m) \in$ $\emptyset^{-1}(N)$, where $m \in M$ and $f \in End(M)$. If $m \notin \emptyset^{-1}(N) +$ I(M), we have to show that $f(M) \subseteq \emptyset^{-1}(N) + I(M)$. Since $f(m) \in \emptyset^{-1}(N)$, then $\emptyset \circ f(m) \in N$, but N is NS-prime submodule of M and one can show that $m \notin N + I(M)$, $f(M) \subseteq$ therefore $\phi \circ f(M) \subseteq N + J(M)$. Thus $\phi^{-1}(N + I(M))$. But $\phi^{-1}(N + I(M)) \subseteq \phi^{-1}(N) + I(M)$, and hence $f(M) \subseteq \emptyset^{-1}(N) + I(M)$. This implies that $\phi^{-1}(N)$ is an NS-prime submodule of M.

REFERENCES:

- [1] Ameri, R., (2003), " On the Prime Submodules of Multiplication Modules", Int. J. of Mathematics and Mathematical Science, 27, 1715-1724.
- [2] Atiah, M.F. and Macdonald, I. G., (1969), "Introduction to Commutative Algebra", University of Oxford.
- [3] Azumaya, G., Mbuntum F. and Varadarajan, K., (1975), " On M-Projective and M-Injective Modules", Pacific J. Math., 95, 9-16.
- [4] Dung, N. V., Huynh. D.V., Smith, P.F. and Wishbauer, R., (1994), " Extending Modules", Pitman Research Notes in Mathematics series (Longman, Harlow).
- [5] EL-Bast, Z.A. and Smith P.F., (1988), "Multiplication Modules", Comm. in Algebra, 16, 755-779.
- Gungoroglu, G., (2000), "Strongly Prime Ideals in CS-[6] Rings", Turk.J.Math., 24, 233-238.
- Iman A. Athab, (2018), "NS-Primary Submodules", [7] Iraqi J. of Science, 59, 404-407.
- Lu, C.P., (1984), "Prime Submodules of Modules", [8] Comment. Math. Univ. Sancti Pauli, 33, 61-69.
- Nuhad S. Almothafar and Adwia J.A.Alkalile, (2015)," [9] Nearly prime Submodules", Int. J. of Advanced Scientific and Technical Research, 6, 166-173.
- [10] Shireen Dakheel, O., (2010) "S-Prime Submodules and Some Related Concepts", Ph.D. Thesis, University of Baghdad.